

A. Brümmer, A. Nikolov, H. Vasuthevan, M. Grieb Chair of Fluidics, TU Dortmund University

EFFECTS OF TWO-PHASE FLUIDS IN TWIN-SCREW EXPANDERS

The 9th International Conference on Compressor and Refrigeration, 2019

twin-screw expander (dry)

- inlet throttling
- clearance losses
- heat transfer
- hydraulic losses
- mechanical friction

motivation

motivation

How to design an efficient liquid-flooded twin-screw expander?

geometry abstraction

(Janicki and Kauder 2003)

3d twin-screw expander geometry

abstracted geometry

chamber model simulation

fluid capacities

conservation of mass

$$\left(\frac{dM}{dt}\right)_i = \cdots$$

conservation of energy

$$\left(\frac{dE}{dt}\right)_i = \cdots$$

connections• mass flows
$$\dot{m} = \alpha \cdot \dot{m}_s$$
 α := flow coefficient \dot{m}_s := isentropic mass flow• heat flows $\dot{Q} = \beta \cdot A \cdot \Delta T$ β := heat transfer coefficient• mechanical energy $dW_i = -p \cdot dV$

- \dot{m}_a := expander mass flow
- P_i := expander indicated power

chamber model simulation

First two-phase effect: Increased inlet throttling!

7

twin-screw expander in an ORC with oil

(Nikolov and Brümmer 2017)

Lessons learned:

- Two-phase flow considerably increases the inlet throttling (and seals the clearances).
- Individual two-phase flow coefficients maybe extracted from the characteristic map.

How is it possible to calculate the two-phase flow coefficient?

two-phase flow pattern map (vertical flow)

Lessons learned:

 The flow coefficients for a two-phase inlet flow can be calculated knowing the flow pattern and taking slip between gas and liquid into account.

Second two-phase effect: Condensation.

(Grieb and Brümmer 2014)

superheated steam

expander speed [10³ min⁻¹]

thermal capacities for diabatic chamber model simulation

(Grieb and Brümmer 2019)

temperature distributions in housing and rotors

(Grieb and Brümmer 2019)

technische universität dortmund

(Grieb and Brümmer 2019)

Lessons learned:

- Condensation during chamber filling primarily takes place at the rotors and increases the expander mass flow rate.
- Condensed liquid reduces indicated power.
- Condensed liquid does not result in significant sealing of gaps (not shown).

Third two-phase effect: Hydraulic losses!

twin-screw expander in an ORC with oil

(Nikolov und Brümmer 2017)

$\dot{\Phi}_{friction}(L,...) := friction losses$

Ė_{kin}(L,...) := kinetic energy

Is it possible to avoid the assumption of a liquid surge length L ?

CFD simulation (relative system) fundamental experiment rotor profile wall (housing) pressure outlet pressure inlet wall mass flow (profile) inlet

31

ongoing research: developing a new analytical model for hydraulic losses

Lessons learned:

- Mainly responsible for hydraulic losses are friction losses and rotational kinetic energy losses.
- A semi-analytical model to calculate the hydraulic losses is known.
- Developing a new analytical model for hydraulic losses is ongoing research.

THANK YOU FOR YOUR ATTENTION!

A. Brümmer, A. Nikolov, H. Vasuthevan, M. Grieb Chair of Fluidics, TU Dortmund University

EFFECTS OF TWO-PHASE FLUIDS IN TWIN-SCREW EXPANDERS

references (1)

Deipenwisch, Robert (2000): Ein Beitrag zum Einsatz von Öl als Konstruktionselement in Schraubenmaschinen. PhD thesis. TU Dortmund University.

Grieb, Manuel, Brümmer, Andreas (2014): Design and examination of a smallscale screw expander for waste heat recovery. In: International Conference on Screw Machines, VDI Bericht 2228, 2014.

Grieb, Manuel, Brümmer, Andreas (2019): Investigation into the effects of surface condensation in steam-driven twin screw expanders. 11th International Conference on Compressors and their Systems, IOP Conf. Series: Materials Science and Engineering, 2019, in press.

Janicki, Magnus; Kauder, Knut (2003): Adiabatic Modelling and Thermodynamic Simulation of Rotary Displacement Machines. In: International Conference on Compressors and their Systems. City University, London, UK, 7-10 September. IMechE conference transactions, S. 511–519.

references (2)

Kauder, Knut (1987): Das Öl im Schraubenkompressor - ein Faktor für optimale Betriebsverhaeltnisse. In: Pumpen Vakuumpumpen Kompressoren, Nürnberg: Harnisch, 38–44.

Nikolov, Alexander; Brümmer, Andreas (2017): Investigating a Small Oil-Flooded Twin-Screw Expander for Waste-Heat Utilisation in Organic Rankine Cycle Systems. In: Energies 10 (7), S. 869. DOI: 10.3390/en10070869.