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Introduction
• To minimize environmental effects of HVAC systems, 

their direct and indirect GHG emissions should be 
reduced.

• Use working fluids with ultra-low GWPs
• Improve the efficiency of vapor compression cycles
• Develop a new cooling technology, which uses 

working fluids with ultra-low GWPs and is more 
efficient.

• This work presents the overview of caloric cooling 
technologies.
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Introduction
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Caloric Cooling Process
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Kitanovski et al., IJR, 57 (2015)

Brayton Cycle
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Active Caloric Regeneration Process
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Kitanovski et al., IJR, 57 (2015)
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Magnetocaloric (MC)
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MC Working Principle
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Refrigerant is solid, and the system 
requires a heat transfer fluid to exchange 

heat with the conditioned space.

Refrigerant is fluid and moves 
through the conditioned space to 

exchange heat.
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List of Magnetocaloric Cooling Projects
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Kitanovski et al., IJR, 57 (2015)
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Magnetic Material: La(Fe-Mn-Si)13
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L. Huang, D. Y. Cong, L. Ma, Z. H. Nie et al., Large reversible magnetocaloric effect in a Ni-Co-Mn-In
magnetic shape memory alloy, Appl. Physics Letters, 108 032405 (2016).
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Magnetic Material: La(Fe-Mn-Si)13
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M. Krautz, K. Skokov, T. Gottschall, C.S. Teixeira, A. Waske, J. Liu, L. Schultz, O. Gutfleisch,
Systematic investigation of Mn substituted La(Fe,Si)13 alloys and their hydrides for room-
temperature magnetocaloric application, AIP. 118, 053907 (2015).
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ELICit: EU’s Research Project
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• European Union (EU) started the three year research
project, ELICiT “Environmentally Low Impact Cooling
Technology” in 2014 to enhance the commercialization of
magnetic cooling.

• The ELICiT Project focused on applying magnetic cooling
to domestic refrigeration.

• Objectives are:
• Life Cycle Optimization
• System Optimization
• Benchmarked Validation
• Regulations and Standards
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ELICit: Camfridge
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• Magnetic cooling can double COP than R600a freezer
• Pump efficiency doubled.
• Optimized HXs
• Volume of three magnetic cooling systems:

• Camfridge: 5,292 cm3

• Astronautics: 86,400 cm3

• CoolTech: 784,000 cm3

• Used shaped magnetic material/HXs (others use sphere or
powder) to make a compact system

Source: ICR 2015, Yokohama, Japan
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ELICit: CoolTech
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• 2 heat exchangers and 2 small pumps to circulate HTF
• For 380 liter volume cabinet, achieved 3.5-4.2°C Tcabin at 21.5°C

Tamb, Power 38 W with direct HX loop
• Designed for wine cooler: capacity 200 W, COP 4.54, Achieved

-4°C Tlow and 40°C Thigh at 20°C Tini

http://www.cooltech-applications.com/magnetic-refrigeration-system.html
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MC Challenges
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• Magnetocaloric effect decreases as 
temperature moves away from Curie 
temperature, thus efficiency of all cycles 
degrades with increasing temperature lift.

• Need multi-stage cycles using different Curie 
temperatures as each stage can make only 1-
2 K.

• Pumping power is a larger contributor to loss 
than in vapor compression; systems require 
25~60X more pumping power.
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Electrocaloric (ETC)
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List of Electrocaloric and Elastocaloric
Cooling Projects
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Kitanovski et al., IJR, 57 (2015)
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Electrocaloric: Polymer
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Zhang et al, 2015. Adv. Materials.
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Electrocaloric: Ceramic

18

Zhao et al, 2015. J. Alloys & 
Compounds. 653 (2015).

• Developed PLZST 2/57/38/5 anti-
ferroelectrics (AFE) thick films with 
ZrO2 buffer layer on LNO bottom 
electrodes

• Achieved an enhanced relative 
dielectric constant and a reduced 
leakage current.  Improved ECE by 
about 10 K from 27.3°C to 37.1°C at 
room temperature 21°C. 

• The corresponding entropy changes 
are 31 and 42 J/kg-K. 
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Electrocaloric: Ceramic

19

S. Hirasawa, T. Kawanami, K. Shirai,, American J. of 
Physics and Applications, 4 (2016) 134-139.

Predicted average heat flux performance
was 70 kW/m2 with 1,000 Hz frequency
and the 20 µm thicknesses of the
electrocaloric material and 20 µm heat
storage material.
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ETC Challenges
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• The limitation in the shape of the materials. 
Only thin films can be applied since a high 
electric field is needed (hundreds of MV/m).

• Lacking of ETC multilayer modules with high 
reliability (> 100 cycles) and high ETC 
performance (DT > 5 K), 

• There is no ETC device demonstration 
reported showing large temp. span (> 10 K) 
with any cooling power.

Source: Q. M. Zhang, Penn State, 2016
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Elastocaloric (ESC)
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Elastocaloric Effect
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Elastocaloric Cooling
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https://www.nature.com/articles/nenergy2016159/figures/1
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Comparison of Elastocaloric Materials 
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(isothermal)

Can we increase latent heat, reduce heat capacity, lower operational stress, 
and increase work recovery?

Comparison of Elastocaloric Materials

25
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Elastocaloric Effect in Ni-Ti Wire
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• 3 mm Nitinol (Ni-Ti alloy)
• 3 mm NiTi wire
• ∆Tad ~ 17K Martensite –

Austenite phase change 
(solid)

• Direction for material 
developments

• High latent heat (Ni-Ti 12 J/g)
• Low transitional stress (Ni-Ti

700 MPa)
• Long fatigue life (Ni-Ti > 

360,000 cycles)
• Low hysteresis to reduce 

loss (Ni-Ti 1 J/g)

Cui et al., 2012, App. Phy. Lett., 101, 073904

∆Τad = 24K

∆
∆Τad = -17K
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Elastocaloric Effect in Ni-Ti Ribbon
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Ni-Ti (50.8/49.2)
DTad ~ 9.5 K

M. Schmidt, A. Schutze, S. Seelecke, Int. J. Refrig. 54 (2015) 88-97.
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Elastocaloric Effect in NiTiFe Film
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Ossmer et al., Smart Mater. Struct. 25 (2016) 085037.

• NiTiFe (49.1/50.5/0.4)
• 3 micron foil
• DTad ~ 9.4 K
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ESC Prototype: NiTi Tube
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Nitinol tube holder

Water in Water out

Compressible solid:
• Deformation: 0.5’’ (12.7 mm), which is 5% of 10’’ (254 

mm) tube
• Force: each tube requires 1,350 lbf (6 kN)

Nitinol tubes

Linear bearing

Hexagon arranged 
NiTi (SMA) tubes in 

each bed

OD = 4.72 mm
ID = 3.76 mm
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ESC Prototype: Ni-Ti Tube
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• Work recovery: two beds 
were 50-50 percent pre-
compressed

• Linear actuator attached 
to the “moving box”

Ni-Ti bed

Loading Head & 
Water Distributor

Linear actuator

Top view
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ESC From Material to System
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ESC-NiTi Tube: Temperature Lift
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• Without compression: all fluid temperatures are 
following the same trend

• With compression: temperature lift exists 
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ESC-NiTi Tube: Performance Progress
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ESC-NiTi Tube: Test Results
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• Maximum cooling capacity: 65 ± 10 W
• Maximum temperature lift: 4.7 ± 0.4 K

4.8 K

• Achieved 4.7 K ∆Tlift when 
using plastic insertions to 
block 50% HTF inside tubes

• Measured 9% heat loss from 
Ni-Ti tubes to the holder

• Adding 12 W parasitic heat 
generated from pumps + 9% 
heat loss  6.1 K ∆Tlift6.1 K

“PEEK” means plastic insulation tubes to 
reduce heat loss to the metal loading heads
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ESC Challenges
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• Material development
• Large latent heat, low transitional stress, low 

hysteresis and long fatigue life
• Custom shape/structure manufacturing capability

• Cycle design: high frequency heat transfer 
feature

• System integration
• Compact and light system
• High efficient heat transfer
• High efficient heat recovery/regeneration
• Cost down
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Performance Comparison
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Technology Φmat @ ∆Tlift = 10 K Φsys @ ∆Tlift = 10 K Φsys,max @ ∆Tlift

Vapor compression 0.88 0.20 0.27 @ 24 K

Magnetocaloric 0.91 0.29 0.30 @ 9 K

Electrocaloric 0.41 n/a n/a

Elastocaloric 0.63 0.14 0.16 @ 17 K
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Summary of Cooling Technologies
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• Solid-state caloric cooling technologies are 
advancing among NIKs because of new 
material development.   

• Summarized the working principles and 
recent advancements of caloric cooling 
technologies. 

• Solid-state caloric technologies are 
applicable to small temperature lift 
applications if single stage is used and 
require more development in both materials 
and system integration.

Conclusions

38
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Thanks for your attention!

Any Questions?
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有問題嗎？

感謝您的關注


	Slide Number 1
	Introduction
	Introduction
	Caloric Cooling Process
	Active Caloric Regeneration Process
	Magnetocaloric (MC)
	MC Working Principle
	List of Magnetocaloric Cooling Projects
	Magnetic Material: La(Fe-Mn-Si)13
	Magnetic Material: La(Fe-Mn-Si)13
	ELICit: EU’s Research Project
	ELICit: Camfridge
	ELICit: CoolTech
	MC Challenges
	Electrocaloric (ETC)
	List of Electrocaloric and Elastocaloric Cooling Projects
	Electrocaloric: Polymer
	Electrocaloric: Ceramic
	Electrocaloric: Ceramic
	ETC Challenges
	Elastocaloric (ESC)
	Elastocaloric Effect
	Elastocaloric Cooling
	Comparison of Elastocaloric Materials 
	Comparison of Elastocaloric Materials
	Elastocaloric Effect in Ni-Ti Wire
	Elastocaloric Effect in Ni-Ti Ribbon
	Elastocaloric Effect in NiTiFe Film
	ESC Prototype: NiTi Tube
	ESC Prototype: Ni-Ti Tube
	ESC From Material to System
	ESC-NiTi Tube: Temperature Lift
	ESC-NiTi Tube: Performance Progress
	ESC-NiTi Tube: Test Results
	ESC Challenges
	Performance Comparison
	Summary of Cooling Technologies
	Conclusions
	Thanks for your attention!�����Any Questions?

